

mipea - minimalistic peripheral access library for the Raspberry Pi

	Installation
	Download the configure script

	Building the configure script

	Troubleshooting

	Peripherals
	Macros

	Functions

	Clock Manager
	Registers

	Enums

	Global Variables

	Functions

	GPIOs
	Registers

	Enums

	Functions

	I2C
	Registers

	Functions

	PWM
	Macros

	Registers

	Enums

	Structs

	Functions

	SPI
	Registers

	Structs

	Functions

	Timer
	Registers

	Functions

	Mipea Wrapper
	Functions

	License

	Documentation License

Indices and tables

	Index

	Module Index

	Search Page

Installation

The source code is hosted on GitHub [https://github.com/jasLogic/mipea]. mipea uses autotools (autoconf,
automake, libtool) to build and install the library. The git repository
does not include the configure script and Makefile.in which
means that you have two options for installing the library.

Download the configure script

On GitHub [https://github.com/jasLogic/mipea], when you look under the tab releases [https://github.com/jasLogic/mipea/releases]
you will find some release with a name like for example “v2.0.0”.
Then you can download the corresponding file named “mipea_x.x.x”
which includes the configure script and Makefile.in.
After downloading just run these commands from inside the downloaded directory:

$./configure
$ make
$ sudo make install

Building the configure script

When you have the GNU autotools installed you can simply clone this repository
and build the configure script and Makefile.in yourself:

$ git clone https://github.com/jasLogic/mipea.git
$ cd mipea
$ autoreconf --install
$./configure
$ make
$ sudo make install

Troubleshooting

Configure script can not find /proc/cpuinfo

If the configure script prints this warning:

configure: WARNING: cannot find file /proc/cpuinfo

than the script was unable to find the cpuinfo file which is needed
to determine the SoC (BCM2835 or BCM2836/7) and the revision. Pis with a
revision number where the last four digits are less than 0004
use I2C bus 0 instead of 1, like the new ones.

This error can be fixed by editing the config.h file ensuring that it
contains these lines (depending on your Pi):

#define BCM2835 1
#define BCM2836_7 1
#define USE_I2C_BUS_0 1

When running a program, the shared library file is not found

I noticed that sometimes the library can be linked, but when running a program
an error message appears saying: File or directory not found.
If you havethis problem just run ldconfig
or follow the output from sudo make install:

--
Libraries have been installed in:
 /usr/local/lib

If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use the `-LLIBDIR'
flag during linking and do at least one of the following:
 - add LIBDIR to the `LD_LIBRARY_PATH' environment variable
 during execution
 - add LIBDIR to the `LD_RUN_PATH' environment variable
 during linking
 - use the `-Wl,-rpath -Wl,LIBDIR' linker flag
 - have your system administrator add LIBDIR to `/etc/ld.so.conf'

See any operating system documentation about shared libraries for
more information, such as the ld(1) and ld.so(8) manual pages.
--

Wifi stops working when using the library

In versions 2.1.0 and below the GPIO map and unmap functions cleared all
pullup / -downs on all pins. This could lead to the wifi not working until a
reboot. This issue should be fixed with version 2.1.1.

Peripherals

The peripheral functions are something like the core of the library.
They map and unmap the memory used by all other parts.

Macros

	
PERIPHERAL_BASE_BCM2835

	0x20000000

This macro holds the value of the peripheral base, when a BCM2835 is used.

	
PERIPHERAL_BASE_BCM2836_7

	0x3F000000

This macro holds the value of the peripheral base, when a BCM2836 or
BCM2837 is used.

Functions

	
int peripheral_map(volatile uint32_t **map, uint32_t offset, uint32_t size)

	This function maps a code memory block of size size at offset
offset from the peripheral base.

Note

The offset must be a multiple of the page size which is 4096 on the Raspberry Pi.

The function returns 0 on success and -1 on error.

	
void peripheral_unmap(void* map, uint32_t size)

	This function unmaps the memory mapped to pointer map with
size size.

	
int peripheral_ismapped(void *map, uint32_t size)

	This function checks if a pointer map is already mapped to a
memory region with the size size. It returns true if
the pointer is already mapped and false if not.

Clock Manager

Registers

	
struct clock_manager_register_map

	This struct maps the registers of the clock manager.
The names of the struct members correspond to the registers. Unfortunately,
the official datasheet does not feature this chapter. But there is an
upload of this chapter here: BCM2835 clocks [https://de.scribd.com/doc/127599939/BCM2835-Audio-clocks]:

struct clock_manager_register_map {
 uint32_t GP0CTL;
 uint32_t GP0DIV;
 uint32_t GP1CTL;
 uint32_t GP1DIV;
 uint32_t GP2CTL;
 uint32_t GP2DIV;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t PCMCTL;
 uint32_t PCMDIV;
 uint32_t PWMCTL;
 uint32_t PWMDIV;
}

	
extern volatile struct clock_manager_register_map *CM

	CM = (volatile struct clock_manager_register_map *)(clock_manager_base_ptr + 28);

By using this variable, the registers of the clock manager can be accessed
like this CM->PWMCTL.

Enums

Clock sources

This enum holds the values for the different clock sources:

enum {
 CLOCK_GND,
 CLOCK_OSC,
 CLOCK_TST0,
 CLOCK_TST1,
 CLOCK_PLLA,
 CLOCK_PLLC,
 CLOCK_PLLD,
 CLOCK_HDMI
};

Global Variables

	
extern const uint32_t CM_PASSWD;

	const uint32_t CM_PASSWD = 0x5A000000;

This variable holds the clock manager password. This value must always be
present when writing to a clock manager register
(e.g. by OR with the value).

Functions

	
int clock_map(void)

	This function maps the clock manager registers.
It calls peripheral_map() with the values
CLOCK_MANAGER_OFFSET and CLOCK_MANAGER_SIZE. On error
-1 is returned.

	
void clock_unmap(void)

	This function unmaps the clock manager.

The following functions all take a pointer to a clock manager register as an
argument because all the registers for the different clocks have the
same structure. This means that you just need to tell the clock manager which
clock to use (by pointing to the right register). For example:
clock_enable(&CM->PWMCTL);

	
void clock_enable(volatile uint32_t *reg)

	This function enables the clock with the register pointed to by reg.

	
void clock_disable(volatile uint32_t *reg)

	This function disables the clock with the register pointed to by reg.

	
void clock_configure(volatile uint32_t *reg, clock_source_t src, unsigned int divisor, unsigned int mash)

	This function configures the clock with the register pointed to by
reg and sets up the clock_source_t src, the divisor
divisor with the mash factor mash.

Todo

Add a decimal places to the divisor.

GPIOs

Registers

	
struct gpio_register_map

	This struct maps the registers of the GPIOs. The names of the struct members
correspond to the registers from the Datasheet [https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf]:

struct gpio_register_map {
 uint32_t FSEL[6];
 uint32_t: 32;
 uint32_t SET[2];
 uint32_t: 32;
 uint32_t CLR[2];
 uint32_t: 32;
 uint32_t LEV[2];
 uint32_t: 32;
 uint32_t EDS[2];
 uint32_t: 32;
 uint32_t REN[2];
 uint32_t: 32;
 uint32_t FEN[2];
 uint32_t: 32;
 uint32_t HEN[2];
 uint32_t: 32;
 uint32_t LEN[2];
 uint32_t: 32;
 uint32_t AREN[2];
 uint32_t: 32;
 uint32_t AFEN[2];
 uint32_t: 32;
 uint32_t PUD;
 uint32_t PUDCLK[2];
// BCM2711 only
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t: 32;
 uint32_t PUPPDN[4];
};

	
extern volatile struct gpio_register_map *GP

	GP = (volatile struct gpio_register_map *)gpio_base_ptr;

By using this struct, the registers of the GPIOs can be accessed like this
GP->SET[0].

Enums

Pin functions

This enum holds the values for the various pin functions:

enum {
 INPUT, OUTPUT, ALT0, ALT1, ALT2, ALT3, ALT4, ALT5
};

Pullup / -downs

This enum holds the values for the states of the pullups / -downs:

enum {
 PUD_DISABLE, PUD_DOWN, PUD_UP
};

Functions

	
int gpio_map(void)

	This function maps the GPIO registers. It calls peripheral_map() with
the values GPIO_OFFSET and GPIO_SIZE. On error
-1 is returned.

	
void gpio_unmap(void)

	This function unmaps the GPIOs.

	
void gpio_func(uint32_t pin, int function)

	This function sets the pin pin to the pin function function.

	
void gpio_set(uint32_t pin)

	Set the pin pin.

	
void gpio_clr(uint32_t pin)

	Clear the pin pin.

	
uint32_t gpio_tst(uint32_t pin)

	Test the pin pin. This function returns 0 or false
when the pin is low and non-zero if the pin is high.

	
void gpio_pud(uint32_t pin, int pud)

	Use the pullup / -down functionality pud on the pin pin.

	
void gpio_inp(uint32_t pin)

	Make pin pin an input.

	
void gpio_out(uint32_t pin)

	Make pin pin an output.

I2C

Registers

	
struct i2c_register_map

	This struct maps the registers of the BSC controller.
The names of the struct members correspond to the registers
from the Datasheet [https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf]:

struct i2c_register_map {
 uint32_t C;
 uint32_t S;
 uint32_t DLEN;
 uint32_t A;
 uint32_t FIFO;
 uint32_t DIV;
 uint32_t DEL;
 uint32_t CLKT;
};

	
extern volatile struct i2c_register_map *I2C

	I2C = (volatile struct i2c_register_map *)i2c_base_ptr;

By using this variable, the registers of the I2C can be accessed like this
I2C->FIFO.

Functions

	
int i2c_map(void)

	This function maps the I2C registers. It calls peripheral_map() with
the values I2C_OFFSET and I2C_SIZE. I2C_OFFSET is
defined in i2c.c. On error -1 is returned.

	
void i2c_unmap(void)

	This function unmaps the I2C registers.

	
void i2c_set_address(uint8_t addr)

	This function sets the address of the I2C device to communicate with.
The address is a seven bit value.

	
void i2c_set_clkdiv(uint16_t divisor)

	This function sets the clock divisor of the BSC controller.

Note

The clock source is the core clock with a frequency, according to the Datasheet [https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf], of 150 MHz and according to this file [https://github.com/bootc/linux/blob/073993b3f3e23fb8d376f9e159eee410968e0c57/arch/arm/mach-bcm2708/bcm2708.c#L208] and other sources of 250 MHz. When I tested the clock speed of I2C and SPI with a logic analyzer, it seems that 250 MHz is correct (at least for the Raspberry Pi Zero I use).

	
void i2c_set_clkstr(uint16_t clkstr)

	This function sets the clock stretch timeout (or delay). This means that
the master will wait clkstr cycles after the rising clock edge
for the slave to respond. After this the timeout flag is set.
This can often be left at reset value 0x40.

	
void i2c_start(void)

	Starts the BSC controller and clears the flag register.

	
void i2c_stop(void)

	Disables the BSC controller.

	
void i2c_write_byte(uint8_t byte)

	Write a byte of data.

	
uint8_t i2c_read_byte(void)

	This function receives a byte of data and returns it.

	
void i2c_write_data(const uint8_t *data, uint16_t length)

	This function writes length bytes of data pointed to by data.

	
void i2c_read_data(uint8_t *data, uint16_t length)

	This function receives length bytes of data and writes them to
the array data.

	
void i2c_write_register(uint8_t reg, uint8_t data)

	This function writes to bytes of data. First reg and then
data.

Note

You cannot use two calls to i2c_write_byte() instead of this function because this is only one transmission, while two times i2c_write_byte() would be two different transmissons.

	
uint8_t i2c_read_register(uint8_t reg)

	In contrast to i2c_write_register() you can use a call to
i2c_write_byte() and to i2c_read_byte(). This is because
I2C needs to make two transmissions anyway to change the read / write bit.

Useful Values

	I2C_FIFO_SIZE

	The size of the I2C FIFO

	I2C_C_I2CEN

	Enable I2C

	I2C_C_ST

	Start transfer

	I2C_C_CLEAR

	Clear the FIFO

	I2C_C_READ

	This transfer read from the slave

	I2C_S_RXS

	FIFO can be read

	I2C_S_TXD

	FIFO is full

	I2C_S_DONE

	Transfer done

PWM

Note

The Datasheet [https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf] specifies PWM channels 0 and 1. The Raspberry Pi has pins for PWM channels 1 and 2, you just need to add one.

Macros

	
RNG_CHANNEL0

	

	
DAT_CHANNEL0

	

	
RNG_CHANNEL1

	

	
DAT_CHANNEL1

	#define RNG_CHANNEL0 PWM->RNG1
#define DAT_CHANNEL0 PWM->DAT1
#define RNG_CHANNEL1 PWM->RNG2
#define DAT_CHANNEL1 PWM->DAT2

To prevent confusion (because the Datasheet [https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf] calls the PWM channels 1 and 2
and the Raspberry Pi 0 and 1) the values of the registers which need to be
used “on the fly” are :code;`defined` from 2 to 1 and from 1 to 0.

Registers

	
struct pwm_register_map

	This struct maps the registers of the PWM.
The names of the struct members correspond to the registers
from the Datasheet [https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf]:

struct pwm_register_map {
 uint32_t CTL;
 uint32_t STA;
 uint32_t DMAC;
 uint32_t: 32;
 uint32_t RNG1;
 uint32_t DAT1;
 uint32_t FIF1;
 uint32_t: 32;
 uint32_t RNG2;
 uint32_t DAT2;
};

	
extern volatile struct pwm_register_map *PWM

	PWM = (volatile struct pwm_register_map *)pwm_base_ptr;

By using this variable, the registers of the PWM can be accessed like this
PWM->RNG1.

Enums

PWM channel number

This enum holds the values distinguishing PWM channel 0 and 1:

enum {
 PWM_CHANNEL0, PWM_CHANNEL1
};

Structs

	
pwm_channel_config

	This struct is used to configure a PWM channel:

typedef struct {
 union {
 struct {
 uint32_t: 1;
 uint32_t mode: 1;
 uint32_t rptl: 1;
 uint32_t sbit: 1;
 uint32_t pola: 1;
 uint32_t usef: 1;
 uint32_t: 1;
 uint32_t msen: 1;
 };
 uint32_t ctl_register;
 };
 unsigned int divisor;
 uint32_t range;
} pwm_channel_config;

	
uint32_t ctl_register

	This member can be directly edited by the anonymous struct inside
this union. This register maps directly to the CTL register,
with some offset for PWM 1. The settings of this register are described
in the Macros.

	
unsigned int divisor

	The divisor which is passed to the Clock Manager.

	
uint32_t range

	The range to which the PWM counter counts before it starts over.

Functions

	
int pwm_map(void)

	This function maps the PWM registers. It calls peripheral_map() with
the values PWM_OFFSET and PWM_SIZE. On error
-1 is returned.

	
void pwm_unmap(void)

	This function unmaps the PWM registers.

	
void pwm_configure(int channel, pwm_channel_config *config)

	This function configures channel with a
pwm_channel_config pointed to by config.

	
void pwm_enable(int channel)

	This function enables channel.

	
void pwm_disable(int channel)

	This function disables channnel.

Configuration Values

	PWM_CTL_MODE_PWM

	Use PWM mode

	PWM_CTL_MODE_SERIALISER

	Use serialiser mode

	PWM_RPTL_STOP

	If serialiser mode: Transmission stops when fifo empty

	PWM_RPTL_REPEAT

	If serialiser mode: Repeat last data when fifo empty

	PWM_SBIT_LOW

	Output low when no transmission active

	PWM_SBIT_HIGH

	Output high when no transmission active

	PWM_POLA_DEFAULT

	Polarity is default

	PWM_POLA_INVERTED

	Polarity is innverted

	PWM_USEF_DATA

	Data register is transmitted

	PWM_USEF_FIFO

	Data from fifo is transmitted

	PWM_MSEN_PWMALGORITHM

	Use PWM algorithm

	PWM_MSEN_MSRATIO

	Use MS ratio

SPI

Registers

	
struct spi_register_map

	This struct maps the registers of the SPI.
The names of the struct members correspond to the registers
from the Datasheet [https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf]:

struct spi_register_map {
 uint32_t CS;
 uint32_t FIFO;
 uint32_t CLK;
 uint32_t DLEN;
 uint32_t LTOH;
 uint32_t DC;
};

	
extern volatile struct spi_register_map *SPI

	SPI = (volatile struct spi_register_map *)spi_base_ptr;

By using this variable, the registers of the SPI can be accessed like this
SPI->CS.

Structs

	
spi_channel_config

	This struct is used to configure SPI:

typedef struct {
 union {
 struct {
 uint32_t: 2;
 uint32_t cpha: 1;
 uint32_t cpol: 1;
 uint32_t: 2;
 uint32_t cspol: 1;
 uint32_t: 14;
 uint32_t cspol0: 1;
 uint32_t cspol1: 1;
 uint32_t cspol2: 1;
 };
 uint32_t cs_register;
 };

 uint16_t divisor;
} spi_channel_config;

	
uint32_t cs_register

	This member can be directly edited by the anonymous struct inside
this union. This register maps directly to the CS register.
The settings of this register are described
in the `Macros`_.

	
uint16_t divisor

	The master clock divisor.

Note

The clock source is the core clock with a frequency, according to the Datasheet [https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf], of 150 MHz and according to this file [https://github.com/bootc/linux/blob/073993b3f3e23fb8d376f9e159eee410968e0c57/arch/arm/mach-bcm2708/bcm2708.c#L208] and other sources of 250 MHz. When I tested the clock speed of I2C and SPI with a logic analyzer, it seems that 250 MHz is correct (at least for the Raspberry Pi Zero I use).

Functions

	
int spi_map(void)

	This function maps the SPI registers. It calls peripheral_map() with
the values SPI_OFFSET and SPI_SIZE. On error
-1 is returned.

	
void spi_unmap(void)

	This function unmaps the SPI registers.

	
void spi_configure(spi_channel_config *config)

	This function configures SPI with a spi_channel_config
pointed to by config.

	
void spi_set_ce(uint8_t ce)

	This function sets which chip enable line the SPI controller should use.
This can be a 3 bit value.

	
void spi_transfer_start(void)

	This function starts a SPI transfer.

	
void spi_transfer_stop(void)

	This function stops the current SPI transfer.

	
uint8_t spi_transfer_byte(uint8_t data)

	While there is a SPI transfer active you can call this function as often
as needed by the slave, to send and receive. This function needs to be
called between spi_transfer_start() and spi_transfer_stop(),
it sends data over SPI and asynchronously receives
data and returns it.

	
uint8_t spi_send2_recv1(uint8_t data0, uint8_t data1)

	This function writes to bytes of data and than keeps the clock running to
receive and return the third byte. spi_transfer_start()
and spi_transfer_stop() may not be called when using this
function.

CS Register Bit Values

	SPI_CS_CE0

	Use chip enable 0

	SPI_CS_CE1

	Use chip enable 1

	SPI_CS_CE2

	Use chip enable 2

	SPI_CPHA_CLK_BEGINNING

	Data on clock leading edge

	SPI_CPHA_CLK_MIDDLE

	Data on clock trailing edge

	SPI_CPOL_RESET_LOW

	Clock polarity: active low

	SPI_CPOL_RESET_HIGH

	Clock polarity: active high

	SPI_CSPOL_ACTIVE_LOW

	Chip enable: active low

	SPI_CSPOL_ACTIVE_HIGH

	Chip enable: active high

Timer

Registers

	
struct timer_register_map

	This struct maps the registers of the timer.
The names of the struct members correspond to the registers
from the Datasheet [https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf]:

struct i2c_register_map {
 uint32_t CS;
 uint32_t CLO;
 uint32_t CHI;
 uint32_t C0;
 uint32_t C1;
 uint32_t C2;
 uint32_t C3;
};

	
extern volatile struct timer_register_map *TMR

	TMR = (volatile struct timer_register_map *)timer_base_ptr;

By using this variable, the registers of the timer can be accessed like this
TMR->CLO.

Functions

	
int timer_map(void)

	This function maps the timer registers. It calls peripheral_map() with
the values TIMER_OFFSET and TIMER_SIZE. On error
-1 is returned.

	
void timer_unmap(void)

	This function unmaps the timer registers.

	
void timer_read(uint64_t *counter);

	This function reads the value of the timer into the 64-bit varbiale
pointed to by counter.

Mipea Wrapper

The mipea.c / h files are just a wrapper for all the other parts of the library.
If you are lazy (or need all peripherals mapped) than this wrapper is usefull.

Functions

	
int mipea_map(void)

	This function maps all the peripherals and returns -1 on error.

	
void mipea_unmap(void)

	This function unmaps all the peripherals.

License

Copyright (C) 2018 Jaslo Ziska
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Documentation License

Attribution-ShareAlike 4.0 International

===

Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.

 Considerations for licensors: Our public licenses are
 intended for use by those authorized to give the public
 permission to use material in ways otherwise restricted by
 copyright and certain other rights. Our licenses are
 irrevocable. Licensors should read and understand the terms
 and conditions of the license they choose before applying it.
 Licensors should also secure all rights necessary before
 applying our licenses so that the public can reuse the
 material as expected. Licensors should clearly mark any
 material not subject to the license. This includes other CC-
 licensed material, or material used under an exception or
 limitation to copyright. More considerations for licensors:
	wiki.creativecommons.org/Considerations_for_licensors

 Considerations for the public: By using one of our public
 licenses, a licensor grants the public permission to use the
 licensed material under specified terms and conditions. If
 the licensor's permission is not necessary for any reason--for
 example, because of any applicable exception or limitation to
 copyright--then that use is not regulated by the license. Our
 licenses grant only permissions under copyright and certain
 other rights that a licensor has authority to grant. Use of
 the licensed material may still be restricted for other
 reasons, including because others have copyright or other
 rights in the material. A licensor may make special requests,
 such as asking that all changes be marked or described.
 Although not required by our licenses, you are encouraged to
 respect those requests where reasonable. More_considerations
 for the public:
	wiki.creativecommons.org/Considerations_for_licensees

===

Creative Commons Attribution-ShareAlike 4.0 International Public
License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution-ShareAlike 4.0 International Public License ("Public
License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your
acceptance of these terms and conditions, and the Licensor grants You
such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and
conditions.

Section 1 -- Definitions.

 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.

 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.

 c. BY-SA Compatible License means a license listed at
 creativecommons.org/compatiblelicenses, approved by Creative
 Commons as essentially the equivalent of this Public License.

 d. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.

 e. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.

 f. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.

 g. License Elements means the license attributes listed in the name
 of a Creative Commons Public License. The License Elements of this
 Public License are Attribution and ShareAlike.

 h. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.

 i. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.

 j. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.

 k. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.

 l. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.

 m. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

 a. License grant.

 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:

 a. reproduce and Share the Licensed Material, in whole or
 in part; and

 b. produce, reproduce, and Share Adapted Material.

 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.

 3. Term. The term of this Public License is specified in Section
 6(a).

 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.

 5. Downstream recipients.

 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.

 b. Additional offer from the Licensor -- Adapted Material.
 Every recipient of Adapted Material from You
 automatically receives an offer from the Licensor to
 exercise the Licensed Rights in the Adapted Material
 under the conditions of the Adapter's License You apply.

 c. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.

 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).

 b. Other rights.

 1. Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.

 2. Patent and trademark rights are not licensed under this
 Public License.

 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

 a. Attribution.

 1. If You Share the Licensed Material (including in modified
 form), You must:

 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:

 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);

 ii. a copyright notice;

 iii. a notice that refers to this Public License;

 iv. a notice that refers to the disclaimer of
 warranties;

 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;

 b. indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and

 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.

 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.

 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.

 b. ShareAlike.

 In addition to the conditions in Section 3(a), if You Share
 Adapted Material You produce, the following conditions also apply.

 1. The Adapter's License You apply must be a Creative Commons
 license with the same License Elements, this version or
 later, or a BY-SA Compatible License.

 2. You must include the text of, or the URI or hyperlink to, the
 Adapter's License You apply. You may satisfy this condition
 in any reasonable manner based on the medium, means, and
 context in which You Share Adapted Material.

 3. You may not offer or impose any additional or different terms
 or conditions on, or apply any Effective Technological
 Measures to, Adapted Material that restrict exercise of the
 rights granted under the Adapter's License You apply.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;

 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material,

 including for purposes of Section 3(b); and
 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.

Section 6 -- Term and Termination.

 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.

 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:

 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or

 2. upon express reinstatement by the Licensor.

 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.

 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.

 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.

Section 7 -- Other Terms and Conditions.

 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.

 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.

 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.

 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.

 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.

===

Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.

Creative Commons may be contacted at creativecommons.org.

Index

 C
 | D
 | G
 | I
 | M
 | P
 | R
 | S
 | T

C

 	
 	Clock Manager

 	clock_configure (C function)

 	clock_disable (C function)

 	clock_enable (C function)

 	
 	clock_manager_register_map (C type)

 	clock_map (C function)

 	clock_unmap (C function)

 	CM (C variable)

D

 	
 	DAT_CHANNEL0 (C macro)

 	
 	DAT_CHANNEL1 (C macro)

G

 	
 	GP (C variable)

 	gpio_clr (C function)

 	gpio_func (C function)

 	gpio_inp (C function)

 	gpio_map (C function)

 	gpio_out (C function)

 	
 	gpio_pud (C function)

 	gpio_register_map (C type)

 	gpio_set (C function)

 	gpio_tst (C function)

 	gpio_unmap (C function)

 	GPIOs

I

 	
 	I2C

 	(C variable)

 	i2c_map (C function)

 	i2c_read_byte (C function)

 	i2c_read_data (C function)

 	i2c_read_register (C function)

 	i2c_register_map (C type)

 	i2c_set_address (C function)

 	
 	i2c_set_clkdiv (C function)

 	i2c_set_clkstr (C function)

 	i2c_start (C function)

 	i2c_stop (C function)

 	i2c_unmap (C function)

 	i2c_write_byte (C function)

 	i2c_write_data (C function)

 	i2c_write_register (C function)

 	Installation

M

 	
 	Mipea Wrapper

 	
 	mipea_map (C function)

 	mipea_unmap (C function)

P

 	
 	PERIPHERAL_BASE_BCM2835 (C macro)

 	PERIPHERAL_BASE_BCM2836_7 (C macro)

 	peripheral_ismapped (C function)

 	peripheral_map (C function)

 	peripheral_unmap (C function)

 	Peripherals

 	PWM

 	(C variable)

 	pwm_channel_config (C type)

 	
 	pwm_channel_config.ctl_register (C member)

 	pwm_channel_config.divisor (C member)

 	pwm_channel_config.range (C member)

 	pwm_configure (C function)

 	pwm_disable (C function)

 	pwm_enable (C function)

 	pwm_map (C function)

 	pwm_register_map (C type)

 	pwm_unmap (C function)

R

 	
 	RNG_CHANNEL0 (C macro)

 	
 	RNG_CHANNEL1 (C macro)

S

 	
 	SPI

 	(C variable)

 	spi_channel_config (C type)

 	spi_channel_config.cs_register (C member)

 	spi_channel_config.divisor (C member)

 	spi_configure (C function)

 	spi_map (C function)

 	
 	spi_register_map (C type)

 	spi_send2_recv1 (C function)

 	spi_set_ce (C function)

 	spi_transfer_byte (C function)

 	spi_transfer_start (C function)

 	spi_transfer_stop (C function)

 	spi_unmap (C function)

T

 	
 	Timer

 	timer_map (C function)

 	timer_register_map (C type)

 	
 	timer_unmap (C function)

 	TMR (C variable)

 	Troubleshooting

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 mipea - minimalistic peripheral access library for the Raspberry Pi

 		
 Installation

 		
 Download the configure script

 		
 Building the configure script

 		
 Troubleshooting

 		
 Configure script can not find /proc/cpuinfo

 		
 When running a program, the shared library file is not found

 		
 Wifi stops working when using the library

 		
 Peripherals

 		
 Macros

 		
 Functions

 		
 Clock Manager

 		
 Registers

 		
 Enums

 		
 Clock sources

 		
 Global Variables

 		
 Functions

 		
 GPIOs

 		
 Registers

 		
 Enums

 		
 Pin functions

 		
 Pullup / -downs

 		
 Functions

 		
 I2C

 		
 Registers

 		
 Functions

 		
 Useful Values

 		
 PWM

 		
 Macros

 		
 Registers

 		
 Enums

 		
 PWM channel number

 		
 Structs

 		
 Functions

 		
 Configuration Values

 		
 SPI

 		
 Registers

 		
 Structs

 		
 Functions

 		
 CS Register Bit Values

 		
 Timer

 		
 Registers

 		
 Functions

 		
 Mipea Wrapper

 		
 Functions

 		
 License

 		
 Documentation License

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

